

A Mechanically Pumped Two-Phase Ammonia Fluid Loop for Thermal Control

Ben Furst, Thermal Fluids Group Team: Stefano Cappucci, Takuro Daimaru, Eric Sunada

Overview

- The JPL Two-Phase Technology Group has developed a novel mechanically pumped two-phase fluid loop for thermal control
- Architecture is based on a modified Capillary Pumped Loop (CPL)
- A fully operational testbed using the target flight fluid (ammonia) has been built and tested
 - Test results demonstrate that the system is feasible

System Architecture

- Architecture is based on a Capillary Pumped Loop (CPL)
 - Additions to CPL include:
 - 1. A mechanical pump,
 - 2. A bypass line
 - 3. An additively manufactured planar evaporator

Typical CPL Architecture

CPL with Mechanical Pump

System Operation I

What does the pump do?

- Assume steady operation with meniscus established in evaporator
 - Liquid and vapor are separated at meniscus (P₃ > P₂)
 - Flow is single-phase everywhere except in condenser
- The pump does not push liquid through evaporator wick
 - Meniscus behaves like a hydrodynamic wall since at meniscus: P_{vapor} > P_{liquid}
- The pump only pushes liquid through the bypass line
 - This allows the pressure at the condenser outlet (P₄) to be dictated by the pump flowrate and pressure drop in the bypass line

System Operation II

How does the pump help?

Consider a pressure balance between point 1 and 4

$$\Delta P_{1,4} = \Delta P_{1,2} + \Delta P_{3,4} - \Delta P_{3,2}$$

$$\Delta P_{1,4} = \Delta P_{1,2} + \Delta P_{3,4} - \Delta P_{3,2}$$

$$\Delta P_{1,4} = \Delta P_{1,2} + \Delta P_{3,4} - \Delta P_{3,2}$$

$$\Delta P_{1,4} = \Delta P_{1,2} + \Delta P_{3,4} - \Delta P_{3,2}$$

$$\Delta P_{1,4} = \Delta P_{1,2} + \Delta P_{3,4} - \Delta P_{3,2}$$

$$\Delta P_{1,4} = \Delta P_{1,2} + \Delta P_{3,4} - \Delta P_{3,2}$$

$$\Delta P_{1,4} = \Delta P_{1,2} + \Delta P_{3,4} - \Delta P_{3,2}$$

$$\Delta P_{1,4} = \Delta P_{1,2} + \Delta P_{3,4} - \Delta P_{3,2}$$

$$\Delta P_{1,4} = \Delta P_{1,2} + \Delta P_{3,4} - \Delta P_{3,2}$$

$$\Delta P_{1,4} = \Delta P_{1,2} + \Delta P_{3,4} - \Delta P_{3,2}$$

$$\Delta P_{1,4} = \Delta P_{1,2} + \Delta P_{3,4} - \Delta P_{3,2}$$

$$\Delta P_{1,4} = \Delta P_{1,2} + \Delta P_{3,4} - \Delta P_{3,2}$$

$$\Delta P_{1,4} = \Delta P_{1,2} + \Delta P_{3,4} - \Delta P_{3,2}$$

$$\Delta P_{1,4} = \Delta P_{1,2} + \Delta P_{3,4} - \Delta P_{3,2}$$

$$\Delta P_{1,4} = \Delta P_{1,4} + \Delta P_{3,4} - \Delta P_{3,2}$$

$$\Delta P_{1,4} = \Delta P_{1,4} + \Delta P_{3,4} - \Delta P_{3,2}$$

$$\Delta P_{1,4} = \Delta P_{1,4} + \Delta P_{3,4} - \Delta P_{3,2}$$

$$\Delta P_{1,4} = \Delta P_{1,4} + \Delta P_{3,4} - \Delta P_{3,2}$$

$$\Delta P_{1,4} = \Delta P_{1,4} + \Delta P_{3,4} - \Delta P_{3,2}$$

$$\Delta P_{1,4} = \Delta P_{1,4} + \Delta P_{3,4} - \Delta P_{3,4}$$

$$\Delta P_{1,4} = \Delta P_{1,4} + \Delta P_{3,4} - \Delta P_{3,4}$$

$$\Delta P_{1,4} = \Delta P_{1,4} + \Delta P_{1,4} + \Delta P_{3,4}$$

$$\Delta P_{1,4} = \Delta P_{1,4} + \Delta P_{1,4} + \Delta P_{1,4}$$

$$\Delta P_{1,4} = \Delta P_{1,4} + \Delta P_{1,4} + \Delta P_{1,4}$$

$$\Delta P_{1,4} = \Delta P_{1,4}$$

$$\Delta P_$$

• Solve for capillary pressure: $\Delta P_{3,2}$

$$\Delta P_{3,2} = \Delta P_{1,2} + \Delta P_{3,4} - \Delta P_{1,4}$$

- Capillary pumping is assisted by pressure drop in bypass line
- > The mechanical pump covers the pressure drop in the bypass line

Addition of the mechanical pump can significantly increase pumping capacity

Advantages of Pump-Assisted CPL Achitecture

- Adds additional capability to the classic CPL architecture
 - Can accommodate larger pressure drops due to pump
 - Higher heat loads are possible
 - Longer transport lengths possible
 - Simplifies integration and testing
 - Can incorporate mechanical fittings/valves
 - Less sensitive to adverse orientations during ground testing
 - More robust operation
 - Mechanical pump gives additional control authority
 - Could operate as a passive CPL with degraded performance if pump fails

Testing Overview

- A pump-assisted CPL has been built and is currently under test
 - Developed over past 3 years
- Currently working with an operationally flight-like system
 - Working fluid: Ammonia (target flight-fluid)
 - Incorporates all major system components in actual configuration
 - Instrumented to monitor temperature, pressure, flowrate
- System has demonstrated stable, repeatable performance
 - System is operating as anticipated
 - Over 350 hours of testing completed
- Recent test campaign showed promising results
 - Stable transport of heat loads from 30 W to 850 W
 - Heat fluxes sustained up to 13 W/cm²
 - Maintained isothermal planar evaporator (± 2°C) between 30 W and 300 W for a fixed pump speed

System Schematic

Operating Specifications		
Fluid	Ammonia	
Nominal operating temperature	20°C	
Max operating temperature	30°C	
Nominal operating pressure (Ammonia vapor pressure at 20°C)	124 psia (110 psig)	
Max planned working pressure (Ammonia vapor pressure at 30°C)	170 psia (155 psig)	
Relief valve set pressure	215 psia (200 psig)	
System Proof Pressure	250 psig	

Legend		
P		Press. transducer (abs.)
PG		Pressure gauge (analog)
T		Temperature gauge
TC		Thermocouple
FM		Flow meter
S		Sight glass
8		Ball valve
8		Needle valve

Hardware

Experimental Data I

Notes

- Total flowrate fixed @ 90 g/min
- Heat load varied from 50 W to 300 W
- Temperature @ evaporator outlet steady at ~27°C
- As heat load increases, evaporator flowrate increases

Experimental Data II

Notes

- As the heat load increases, the flowrate through the evaporator increases
- This implies that
 - a) The evaporator wick is working as a capillary pump
 - b) The fluid phases are separated with pure vapor only existing between evaporator and condenser
- The system is working as anticipated

Evaporator IR Images

Pump Flowrate: 90 g/min

Accumulator Temperature: 26°C

Evaporator Temperature: 28°C

150 W

100 W

(100 W top; 50 W bottom) (1

325 W (150 W top; 175 W bottom)

Evaporator Design

Fabrication: DMLS **Material:** Aluminum

Size: 8.4" x 7.8" x 0.63"

MAWP: 200 psig

Max Pore Size: 22 μm Permeability: 1e-13 m²

Porosity: 24%

Conclusion

- A new architecture for a pump-assisted CPL has been developed
- A prototype ammonia testbed has been built and tested
 - System incorporates a novel AM planar evaporator
- Preliminary test results indicate that the system is feasible
 - System operated as expected
 - Transported heat loads from 30 W to 850 W
 - Max heat flux: 13 W/cm²
 - Subcooling demonstrated from 3°C 10°C

Future Work

- Refine evaporator design
 - Reduce thickness and increase effectiveness
- Increase TRL of system
 - Integrate flight-like components into testbed
 - Continue to experimentally characterize system
 - Develop analytical/numerical design and prediction capability
 - Purse flight-demo opportunities

References

- 1. Furst, Benjamin, et al. "A Comparison of System Architectures for a Mechanically Pumped Two-Phase Thermal Control System." 47th International Conference on Environmental Systems, 2017.
- 2. Cappucci, Stefano, et al. "Working Fluid Trade Study for a Two-Phase Mechanically Pumped Loop Thermal Control System." 48th International Conference on Environmental Systems, 2018.
- 3. Furst, Benjamin, et al. "An Additively Manufactured Evaporator with Integrated Porous Structures for Two-Phase Thermal Control." 48th International Conference on Environmental Systems, 2018.
- Sunada, Eric, et al. "A two-phase mechanically pumped fluid loop for thermal control of deep space science missions." 46th International Conference on Environmental Systems, 2016.

jpl.nasa.gov

© 2019. California Institute of Technology. Government sponsorship acknowledged.